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ABSTRACT 

Cosmic strings, like monopoles, can catalyze proton decay. For integer charged 

fermions, the cross section for catalysis is not amplified, unlike in the case of 

monopoles. We review the catalysis processes both in the free quark and skyrmion 

pictures and discuss the implications for baryogenesis. We present a computa- 

tion of the cross section for monopole catalyzed skyrmion decay using classical 

physics. We also discuss some effects which can screen catalysis processes. 
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1. INTRODUCTION 
It is well known’s2) that grand unified monopoles catalyze baryon decay with a 
strong interaction cross section rather than with a geometric cross section. This 
enhancement of the cross section gives rise to some of the most stringent bounds 
on the number density of monopoles. 3, It is therefore of interest to investigate 
baryon decay catalyzed by cosmic strings. 

It has been shown that - at least for integer charged fermions - there is no 
enhancement of the cross section for cosmic string-catalyzed baryon decay. Thii 
holds for both ordinary’J) and superconducting51e) cosmic strings. (In the case of 
fractionally charged fermions there will be a Bohm-Aharonov effect which leads 
to some amplification’)). The analysis can be performed either using the free 
quark picture496) or the skyrmion pictures) for baryons. 

III this review we summarize some of the issues relevant to cosmic string cat- 
alyzed baryon decay. In the following section we present some heuristic classical 
arguments which show why the catalysis cross section is enhanced for monopoies 
but not for strings. In Section 6 these classical arguments are developed further 
to obtain a derivation of the catalysis cross section for monopoles in the skyrmion 
pictures). In Section 3 we outline the quantum mechanical derivation of the cross 
section in the free quark picture, and in Section 5 we present the corresponding 
calculation in the skyrmion picture. In Section 7 we discuss some effects which 
could screen catalysis processesg). 

Our results - besides their intrinsic interest - have implications for baryogenesisiO). 
As we mention in Section 4, even in the absence of any enhancement of the cross 
section, catalysis processes could ersse a primordial baryon-to-entropy ratio. The 
strength of this effect, however, depends crucially on coupling constants. 

We use units in which tr = c = k~ = 1. G is Newton’s constant, and rnrr 
denotes the Planck mass. u is the scale of symmetry breaking of the phase 
transition which produces the topological defects. 

2. HEURISTIC ARGUMENTS 
Baryon decay can be catalyzed by grand unified monopoles and cosmic strings 
because in the core of these topological defects, the gauge and scalar fields which 
mediate baryon number violating processes are excited. However, the baryons 
must be able to penetrate into the core. Without long range forces which attract 
the baryons to the defect, we expect that the cross section will be at most given 
by the geometrical cross section. 

For monopoles, there is a long range force which can lead to an amplification 
of the cross section. Consider the wave function Q of the baryon. The only 
harmonic which does not experience an angular momentum suppression near the 
core is the s wave. For the s wave, the magnetic moment ji is radial. Hence, 



there is a long range attractive magnetic moment-magnetic field l? force 

F(r) - -$z.q (2-l) 

This force leads to an amplification of the wave function of the baryon at the core 
radius r~ m u- ’ of the monopole and hence to a cross section which is enhanced 
by A’, where A is the ratio of the wave functions at r~ with and without the 
magnetic field. 

It is possible to apply a similar analysis to ordinary’) and superconducting61 
cosmic strings. For ordinary cosmic strings there are no long range physical fields 
and hence no long range forces. Therefore we do not expect any enhancement 
of the cross section. For superconducting cosmic strings there is a long range 
magnetic field - however it is proportional to S, (where p is the angle in the 
plane perpendicular to the string) and hence does not yield any nonvanishing 
force via (2.1). Thus there will be no enhancement of the cross section even 
for superconducting cosmic strings. Naturally, the above discussion will miss 
Bohm-Aharonov type effects7J1). 

In the following sections we shall show that the above arguments are con- 
firmed by quantum mechanical calculations. In Section 3 we use the free quark 
picture (we consider the scattering of a single quark due to the background fields 
of the topological defect), and in Section 4 we explain how the results emerge 
using the skyrmion picture for baryons. 

3. CATALYSIS IN THE FREE QUARK PICTURE 
In this section we ignore the confining forces between the three quarks contained 
in a baryon and consider the one particle scattering by the background monopole 
or cosmic string fields. 

We first derive the cross section for scattering of a quark by a monopole in the 
absence of any wave function amplification. We use a second quantized formalism 
and work to first order in perturbation theory. Hence we calculate the transition 
amplitude A between a single quark initial state 

and a single lepton final state 

Ii >= IQ,0 > (3.1) 

If >= If,0 > (3.2) 

The ‘0’ in (3.1) and (3.2) indicate that we consider states without any external 
gauge particles. The interaction Lagrangian is 

fr = -ieqz p G ( (3.3) 

with A the gauge fields mediating baryon number violating processes. 



For monopoles, we can write down the expression for A in the absence of long 
range fields 

A = 00 <fli >---- e J d’z < +j+‘$lq >< OIA,lO > (3.4) 

up to higher order terms in coupling constants. The first expectation value is 
that in the Hilbert space of fermion states, the second in that of gauge particles. 
(3.4) can be evaluated approximately by integrating over the core, using free field 
wave functions: 

A - co -‘rn 
J 

,& ei(Et-EkrP v-~/~(E~E~,)-I/z 

where m is the fermion mass. Hence, the differential cross section is 

do 
z free 

- $v J d3k’lAJ2 u e*o-2 (;)* 

T is the total integration time and V the cutoff volume. 

The cross section with interactions is 

(3.6) 

where, as in Section 2, A is the ratio of the wave function including interactions 
to the free field wave function, evaluated at the core radius. 

To determine A, we solve the Dirac equation with and without the long range 
gauge fields of the monopole. The Dirac equation is 

JD*-m$=O. (3.3) 

We choose a Weyl basis for $ and look for stationary solutions. (3.8) then becomes 

(H - E)$ = 0 (3.9) 

where E is the energy of the stationary solution and 

( 

m 
H= 

a.(--id-d) 

a * (-if - CAj m 1 
(3.10) 

We look for simultaneous eigenfunctions of total angular momentum J and its L 



component J,. In the Weyi basis, 

I- i+;a 
-( 

0 
0 i+@ 1 

(3.11) 

The crucial point is that in the presence of a magnetic field, the orbital angular 
momentum obtains an extra piece 

t’=mzA~--c~h~=m~A~-egi (3.12) 

This leads to a change in the allowed angular momentum quantum numbers. 
Without the magnetic field, the allowed j values are half integer j = (n + i) , nc 2. 
In the presence of a radial magnetic field, the j values are shifted by a constant 
proportional to eg. In the case of monopoles we must assume the Dirac quanti- 
zation condition 

n’ 
eg=~, n’cZ. (3.13) 

Then, the admissible j values are j = n, n c 2. In particular, there is a mode for 
which the centrifugal potential barrier vanishes. For this mode, the wave function 
will be enhanced near the core compared to the modes which dominate for R = 0. 

Following the methods developed in Refs. 12 and 13 we write the solutions 
for $ with fixed j and m as 

1 f(r) 8) (O,co) 
+jmtrt et PI = - f ( g(5) ,F ,rn (@,cp) 1 

(3.14) 

where rlfi are 2 component eigensections of J and Jz with eigenvalues j(j + 1) 
and m. In the absence of the monopole 

q (4 -77Zr USf’O, (3.15) 

whereas in the presence of the monopole 

f?okl - const lWr-+O. (3.16) 

Hence, taking the ratio of (3.16) and (3.15) evaluated at the monopole core radius, 
we obtain the amplication factor 

A _ go(a-‘) _ Q 
9; (0-l) m 

(3.17) 

From (3.6) and (3.7), it then follows that the cross section for quark scattering 
in the background field of a monopole is 

the well known Callan-Rubakw cross section. 



In the case of an ordinary cosmic string along the z axis, we can similarly 
evaluate the cross section per unit length du/(dfM) with and without long range 
gauge fields. The transition amplitude A is 

A - e m u-l J & & ,i(Ek-E,l)te-i(‘.-L,)zV-l/2(El,Ek,)-1/2A2 (3.19) 

where A is the wave function enhancement factor at the core radius. Hence, 

& 
dRde 

- e2A4mo-2 (3.20) 

In the absence of purely quantum mechanical effects, we expect the factor 
A to be unity because of the absence of physical long range fields. The Dirac 
equation simplifies “1 when using the following representation of the 7 matrices 

-yo = 02 0 

( 1 l- 
0 

$7 - 
-0, ( 

iu, 0 
0 -iU, ‘1 

2- 9-l - ( 
40, 0 

0 iu, ) *y3=(T1 ;) 
(3.21) 

Since the E component of the gauge field vanishes, the upper two components 
of 11 decouple from the lower two. The equation for the upper and lower two 
components is the three dimensional Dirac equation. The next step is to look 
for stationary solutions of the three dimensional Dirac equation with fixed rnw 
mentum k and angular momentum j. If p and 4 are the polar coordinates in the 
plane perpendicular to the string, then 

$~.~(t,~,d) = ,i(j)-ut) $tk*Pl 

( 

e-ib'2 

) ?K(k,p) a/2 . 
(3.22) 

The radial functions $$ and $J,‘_ obey the Bessel equation. 

Unlike for scattering by monopoles, here the admissible values do not change 
when we add the long range gauge fields. However, these fields do effect the 
index Y of the Bessel function. If the Dirac quantization condition is satisfied, 
then for lixed j adding the cosmic string gauge field will shift v by an integer. 
Hence, the behavior of the most singular mode as p -+ 0 is unchanged (although 
which j value this occurs for does change). Hence, there is no amplification of the 
free quark wave function near the core, A u 1, and there is no Callan-Rubakov 
enhancement of the catalysis cross section’). 



However, if the Dirac quantization condition is not satisfied, then the index 
v changes by a fractional amount when adding the cosmic string field. In this 
case, the small p behavior of the most singular mode changes and there will be 
an enhancement of the cross section. This is a purely quantum mechanical effect 
of the Bohm-Aharonov type’). 

For superconducting cosmic string the analysis is conceptually identical but 
technically more complicated because A, # 0. Hence, the two upper components 
of rl, no longer decouple from the lower ones. Wee) obtain a system of coupled 
second order differential equations for 4: and &, the radial part of the uppermost 
and lowermost component of $. However, it can be shown that the terms which 
couple 4: and 4; do not influence the small p behavior of the wavefunctions. 
Hence, as in the case of ordinary cosmic strings, there is no Callan-Rubakov 
enhancement of the cross section. 

4. CATALYSIS AND BARYOGENESIS 
Catalysis effects open new channels by which baryons, antibaryons and leptons 
can equilibrate in the very early universe. Since both initial and final states are in 
thermal equilibrium, no net asymmetry can be created by catalysis processes151. 
However, a primordial baryon to entropy ratio may be erased. To check whether 
this will occur, we must calculate the efficiency of the process. 

Let An be the maximal net number density of baryons converted to an- 
tibaryons by catalysis between the time t, of the phase transition which produces 
strings and the present time. An depends on the catalysis cross section at high 
temperature T which, from (3.20), is 

du - u e2 
dfldt 

m(T)X2 , 

Note that the finite temperature mass m(T) is relevant. At temperatures T > m, 

mm - I’. An also depends on the mean separation t(t) of strings. Long after 
the strings are produced, a scaling solution with t(t) N t is reached. However, at 
the time of formation t,, the separation 
In this caSe E(tJ is the Ginsburg length 

[(t c is determined by microphysics’61. ) 

<(fJ - x-10- , 

for an abelian Higgs model with potential 

V(d) = a(# - c72)2 . 

An is obtained by integrating dn/dt, the maximal number of baryons cat- 



alyzed per unit time and volume. dn/dt is given by 

dn 
d4WE-3(hi(+(t) t-dfw 

where rig(t)) is the number density of baryons and v(t) is the mean relative speed 
between baryons and strings. Obviously, An is dominated by catalysis which 
takes place just after t,. We can set w(t) = 1 and, using (4.1), (4.2) and m(T,) - 
e1i2u, obtain 

An - Xae5/20tcng(lc) (4.5) 

Since the baryon to entropy ratio is constant between rc and the time t,, of equal 
matter and radiation, it can be evaluated at t,, 

(4.6) 

where TLp is the temperature at t,e and m - 1 GeV. Evaluating T, and dropping 
the e dependence, we obtain 

_ u pmPl Gq An -- - x210-s . 
8 0 m 

Since the presently observed baryon to entropy ratio is 10-l’ < y < lo-*, we 
conclude that, provided the coupling constant X is sufficiently small, catalysis is 
too weak to destroy an initial net baryon to entropy ratio. It may seem surprising 
that the effect is not much smaller. It is known”) that monopole catalyzed 
baryon decay is ineffective at erasing the primordial baryon to entropy ratio, 
despite a large Callan-Rubakov enhancement of the cross section. However, for 
monopoles there is an independent bound on the number density of monopolesr*l 
which gives a number density much smaller than the Kibble mechanismm) would 
predict. The bound comes from requiring that monopoles do not give an energy 
density in excess of closure density. For cosmic strings there is no corresponding 
apriori bound, since they chop themselves up efficiently into loops which in turn 
decay by emitting gravitational radiation. It is the large number density given 
by (4.2) which leads to the relatively large effect on rig/S for cosmic strings. 
Note also that at high temperatures (which dominate An), the Callan-Rubakov 
enhancement factor for monopoles (o/m(T))’ decreases to 1. Hence”), we expect 
that (4.6) will be valid also for fractionally charged fermions. 



5. COSMIC STRINGS AND SKYRMION DECAY 
So far we have presented a high energy picture of baryon decay, however, since 
the current energies and densities in the universe are in fact low, in order to 
understand catalysis it is important to develop a low energy picture. One such 
possibility was investigated by Callan and Wittenzo), who examined a skyrmion 
decay process in the presence of a monopole. We will examine the analogous 
process for a string, developing the Callan-Witten argument using the Wu-Yang 
picture of a monopole. Thii allows a ready distinction between the physical sin- 
gularity of the electromagnetic fields at the core and the gauge string singularity. 
We examine the scattering of a skyrmion off a cosmic string, first trying the wire 
model for the string in order to mimic the Dirac model for the monopole, however 
such a picture does not permit baryon decay. We are therefore forced to consider 
a vortex model for the string in order to obtain catalysis in the string core. We 
also consider the analogous process for a superconducting string. First we use 
the wire model, but despite there being long range fields in this case, we again 
show that such a picture does not result in baryon decay. We then use a vortex 
model for the superconducting string and obtain catalysis in the string core. The 
analysis gives a heuristic explanation of the enhancement factor with monopoles, 
ss we will show. 

Let us first highlight the features of the Skyrme model relevant to the catalysis 
procedure. The Skyrme mode122) is a sigma model with stable soliton solutions 
otherwise known as skyrmions. In the case of two quark flavours (which we will 
be assuming here for simplicity), the pion field content is contained in an SU(2) 

field U = exp (E7.3], where r’= (r1,rs,rs) are the three generators of SU(2). 

The field space is thus isomorphic to S 3. Since finiteness of the energy requires 
that U(Z) + const. as : z’ :+ oo, we can think of a soliton field configuration 
as a map from compactified three-space (AZ3 U {oo) E S3) to the three-sphere 
of SU(2). Such maps may be classified according to the homotopy equivalence 
class to which they belong. Since fIs ( S3) Z 2, we may conclude that soliton field 
configurations are labelled uniquely by an integer value, NE (the baryon number), 
which is the degree of the map. In a dynamical theory, the continuity of the fields 
implies that NB is a continuous function of time and hence constant. The baryon 
number may also be more familiarly represented as the charge associated with 
the conserved baryon current 

Bf=& cclvpaTr (lJ-‘&tYU-l~pUU-l&,U). 

In the presence of electromagnetism, the model must be generalised to allow 
for the nucleon charge and magnetic moment interaction. The Skyrme lagrangian 



must be invariant under the gauge transformation 

A,-,A,+c+ (5.2a) 

,y ~ eie~(z)Q~r-ien(z)Q = ,ieo(z)n/2~C-icu(z)rs/2 (5.2b) 

where Q is the quark charge matrix (Q = iIs + irs). Taking into account QCD 
anomalies, Witten23) showed that the baryon current is modified: 

B’ = Bf + ‘= -@‘Yw&(A,TrQ(U-l&U +&JJU-‘)] . 
8r2 (5.3) 

The new A,, dependent term is a divergence. Thus provided there are no singu- 
larities in A,,, and that surface terms vanish, the baryon number is still integral. 
In terms of the topological picture presented previously, provided there are no 
singularities, U(z) is still a map from S3 + S3 and thus the classification of maps 
into equivalence classes labelled by baryon number still holds. 

Callan and Witten considered a skyrmion interacting with a Dirac monopole. 
In a spherical coordinate basis this has a gauge potential given by 

A+ = g( 1 - cos 0) , (5.4) 

which is singular on the line 6 = zr, however the electromagnetic Bux is finite 
everywhere except at r = 0. The singularity of A, on 0 = x is a gauge artifact, 
the Dirac string, which arises because we are trying to express the electromagnetic 
field tensor as the exact differential of a cove&or gauge field on R3 - (0). 

In order to make these intricacies more transparent, we will take an approach 
to the Dirac monopole which avoids Dirac strings - that due to Wu and Yang2’). 
Briefly, the singularity in A,, can be removed if one chooses two coordinate patches 
for R3 - (O}, each with an associated A,, relating the two different ‘branches’ of 
A, by a gauge tranformation on the overlap. Two convenient patches are 

(1) {o<e<r-a ; r>O} ; (2) {6<l9Is; r>O} (5.5) 

with 

Al4 = g(l - cosg) ; A2+ = -g( 1 + cos g). 

These are related by the non-trivial gauge transformation 

(5.8) 

A2p = Al,-W,d (5.7) 

on the overlap. This picture now has no coordinate singularities. To include 
the SU(2) field, U, in this picture, we note that since the U-field is coupled to 



the gauge field the presence of the two branches of A,, indicates that we must 
define a separate field configuration on each chart. These will then be related in 
the overlap by a non-trivial transformation induced by the gauge transformation 
(5.7) on A,,. From (5.2) we conclude that this is 

U2 = ,-i4+Ulei4r3t2 

We now have a perfectly consistent, singularity free picture of the nucleon on the 
background field of the monopole. 

Having removed the singularity problem, we see that once again the SU(2) 
field configuration is a map from compactified physical space into the SU(2) 
three-sphere. However, here we have a non-trivial transformation for U on the 
overlap of the two coordinate patches. Thus although we can classify the field 
configurations in each case according to homotopy equivalence, there is no reason 
to assume that in each case these classes will be the same. Indeed, the effect of the 
gauge transformation is to rotate the vector 2 by an angle 4 around the 3-axis, 
which will have a twisting effect on the ~1, ~2 components. Thus the presence of 
the monopole gauge field shuffles the members of the baryon equivalence classes. 
This ‘shuffling’ is crucial to the physical description which follows. 

Solving the Klein-Gordon equation in the presence of a magnetic monopole 

shows that the wave functions of charged pions are suppressed by a factor of r 
& 

1 
near the core. However for uncharged particles no such suppression occurs. Thus 
in order for the nucleon to approach the monopole core, it must be able to deform 
into a pure 1~’ field configuration. In order for this process to be possible, the 
so field configuration must be able to carry baryon number. Callan and Witten 
found that a pure so radial configuration, UK = exp{ifrs) (where f runs from 0 
at the origin to 2s at infinity), carries baryon number 1; this field configuration 
is called the radial kinkzO). Calculating the radial baryon flux of the kink, shows 

that the radial flux of baryon number into the monopole core is &tJ 2r . Whether or 
not i(O, t) can be non-zero depends on the boundary conditions at the monopole 
core. In the case of a grand unified monopole formed during an SU(5) or SO(10) 
phase transition for example, it is possible for baryon non-conserving boundary 
conditions to be placed, and hence for i(O, t) # 0. Thus monopoles can catalyse 
skyrmion decay. 

We now turn to the case of a skyrmion interacting with a cosmic string. At 
first sight, we might expect some similarities with the monopole case, since the 
monopole has a semi-infinite Dirac string singularity, and we have an infinite 
string. However, this would be misleading; the Dirac string is a gauge singularity 
and can easily be removed by a more suitable description in terms of coordinate 
patches. In the case of a monopole we needed to define two branches of the 
gauge field on two different coordinate patches, related by a non-trivial gauge 



transformation on the overlap. The cosmic string however, has a perfectly well 
defined gauge field without invoking coordinate patches. Thus the gauge field for 
a cosmic string exhibits no singularities, the additional term in (5.3) is once more 
a total divergence, and baryon number is unchanged. Alternatively, if there are 
no gauge singularities, the equivalence classes of the soliton maps are unchanged. 

In grand unified models the string width is of the order of M-l, where M is 
the grand unified mass. Thus, to mimic the approximation of a monopole by a 
Dirac monopole, we take the string as a wire singularity on the symmetry axis. 
Away from this singularity the gauge field is given by 

in cylindrical polar coordinates {p, 9, z}. The static Klein-Gordon equation re- 
duces to 

(VP + ie4J2v = - $ap& + a: + $(a8 - ~cA~)~ 
I 

p = O. (5.10) 

Here, rather like the monopole case, p picks up extra “angular momentum.” 
around the r-axis due to the presence of a non-zero A,J. For the wire model, 
(5.10) implies that the radial part of the wave equation for the lowest angular 
momentum eigenstate must tend to zero as least as quickly as p near p = 0. 
Therefore, as in the mondpole case, the wave functions of charged particles are 
suppressed near the core of the string, but those of uncharged particles need not 
be. Unfortunately, equation (5.3) implies that it is now impossible for a radial 
kink to carry baryon number, since A,, = -iv,,+ is constant outside the wire. 

Taking the wire approximation for a cosmic string leads to a suppression of 
the charged pion fields near the string. However, since a radial kink cannot carry 
baryon number in this case, we cannot have a deformation of the nucleon fields 
that would allow the skyrmion to approach the string core. Hence in the wire 
model of cosmic strings we do not get catalysis. Perhaps this problem is a result 
of approximating the string core by a line. In order to be more physically realistic, 
we will consider a vortex model for the string. To illustrate the salient features 
of skyrmion catalysis by cosmic strings it is only necessary to consider an abelian 
theory. Thus we consider the Nielsen-Olesen vortex2’). This is a vortex solution 
to the lagrangian 

r[d,A,] = D,&D’~ - ~F,,F~Y - $6’4 - $j2, (5.11) 

where D ,, = V, + ieAr is the usual gauge covariant derivative, and F,,” the field 
strength associated with A,. 



The Nielsen-Olesen vortex solution corresponds to an infinite, straight static 
string aligned with the z-axis. In this case, we can choose a gauge in which 

4 = qX(p)P ; A” = i[P(p) - l]V”9. 

This string has winding number one. There are no known analytic solutions for 
X and P, but asymptotic forms may be derived. Near the origin, these are: 

Xap ; P= 1+cJ(p2) =p+o, (5.13) 

Using the asymptotic form for P in the Nielsen-Olesen vortex field instead of the 
wire form in the Klein-Gordon equation (5.10) shows that the radial equation for 
the lowest angular momentum eigenstate now allows +o w const. as p -+ 0. Thus, 
on the scale of the core of the string, we need not have total suppression of 
charged particle wave functions. 

Writing the vortex field A, in spherical polar coordinates and substituting 
into (5.3) shows as before, although slightly less trivially, that the radial kink 
cannot carry baryon number. However, this is no longer critical for we can have 
all three pion fields approaching the core. Once the skyrmion is in contact with 
the core of the string, where the grand unified symmetry is essentially restored, 
the possibility of decay arises. 

We will consider an unwinding process involving all three pion fields by mak- 
ing the simple ansatz that the nucleon field configuration now depends on time: 

UN(Z, t) = exp[iF(r, t)%.?l. (5.14) 

The calculation of the baryon current for this field configuration is somewhat 
involved’), the main result we need is the radial baryon current of the field con- 
figurations 

B’=- F 4nzrz 
. [ 

P(cos2F - I) + rP’%] . 

Integrating this over a sphere of radius r gives 

/ 
B’d2z = 

S’ 

g]lsind [(cos’LF-l)P(rsinO)+r$P’(rsinO)] 

0 

j l5cos2F * 
(5.16) 

=-- 
x 2s / 

dBsinBP(rsin0). 

0 

For small r, P(rsin8) 7 1 + O(r ) 2 im pl ies that the flux of baryon number into 
the string core is -F(l - cos2F)/x. 



Thus in the presence of baryon non-conserving boundary conditions, such as 
we would expect in the string core where the grand unified symmetry is unbroken, 
the skyrmion can unwind. Since F(0) = x and F(m) = 0 for the standard nucleon 
field configuration, we expect that for an unwinding process F changes from R to 
0 at the core of the skyrmion. And indeed 

ANB=/&dtc=/ d&(1 - cos2F)/r = iA F - $sin2F 1 = -1 (5.17) 

The residual field configurations is a topologically trivial excitation of the pion 
fields, and can therefore dissipate. 

Thus strings can catalyse skyrmion decay. The picture however relies funda- 
mentally on taking a vortex model for the string, i.e. one in which the string has 
a finite thickness. A model of the string with infinitesimal thickness (the wire 
model) gives no catalysis. 

We will now comment briefly upon the generalisation to superconducting 
cosmic strings. Unlike their Nielsen-Olesen cousins, these have a long-range elec- 
tromagnetic field, so we might expect some differences with the previous analysis. 
After all, one of the differences between the monopole and the Nielsen-Olesen vor- 
tex was the absence of long range interactions in the latter setup. However this 
is not the case as we will now show. 

Similar to the cosmic string case discussed previously, we can try taking the 
superconducting string to be a wire singularity on the symmetry axis. The long 
range electromagnetic gauge field is 

-4(p) = 2 hz.(p/po), (5.18) 

where po is the radius of the string, and I is the current in the string. kmposing 
(5.18) for p > 0 gives a wire model for the superconducting string. 

Since we now have a long range electromagnetic field, we might expect some 
modifications of the previous analysis. Consider first the Klein-Gordon equation. 
In cylindrical polar coordinates, the Klein-Gordon equation reduces to 

(v, + k.~,)~lp = - iappa, + (a, - ieAJ2 f -+] rp = 0. (5.19) 

Thus, similar to the monopole and cosmic string cases, rp picks up extra ‘angular 
momentum” due to the presence of a non-zero A,. When we insert the form 
for A, from (5.18) into (5.19) there is no analytic solution for cp. However, it 
is possible to show that charged particle wave functions are suppressed near the 
wire, but those of uncharged particles need not be. 



In order to see if the radial kink can carry baryon number we express A, 
in spherical polar coordinates. As in the previous discussions, I3: (given by 
(5.1)) is zero for the radial kink, and the baryon number of the radial kink 
must be zero since there is no h-component or &dependence in A,. Thus the 
previous discussion given for the ordinary cosmic string also applies to the case 
of superconducting cosmic strings: since the charged fields cannot approach the 
string core, and since a radial kink cannot carry baryon number, the nucleon 
cannot approach the core and unwind. 

In order to obtain catalysis it seems necessary to consider a vortex model for 
the superconducting string. To obtain such a model, we consider the U(1) x U(l)’ 
model of Wittenz5). 

The lagrangian in this case is 

L = D,#D’d - 1G 
4 py 

GpY + D,p’D’o - AF 
4 pv 

FpY 
(5.20) 

- +!(& - $)2 + (fld12 - 7n2)lu12 + plulj , 

where 4 and o are complex scalar fields; A,, XQ and f are coupling constants; 

D&I = VP& i igC& D,,u = V,o + ieA,o, 

C, and A,, being abelian gauge fields carrying charges of g and e respectively, 
with G,, and Fpy being the corresponding field strengths. 

In analogy with the Nielsen-Olesen vortex, we consider a ‘static’ cylindri- 
cally symmetric superconducting string, i.e. one with constant current in the 
z-direction. (We will write this constant as c.) This means that we can choose a 
gauge in which 

qi = R(p)P c, = )P@) - l)V,r9 

u = S(p)P A, = +bl - c)V,z 

(5.21) 

The analytic expressions near the origin are 

Rap , P = 1+ o(g) 

s = so + O(P2) , 8 = f + O(P2). 
(5.22) 

As with the Nielsen-Olesen vortex, the gauge fields modify the Klein-Gordon 
equation. The radial equation now becomes 

+&$0(p) = [(Q(P) - s)* + (P(P) - l)*lP*l CPM = Ob2M4 (5.23) 

which allows p(p) -+const. as p -+ 0. Therefore, as with the Nielsen-Ohmen 



vortex, on the scale of the core of the string, we do not have suppression of 
charged particle wave functions. 

In order to calculate the baryon current we require the expression of A,, in 
spherical polar coordinates. From (5.3) we can see that BJ’ = BL,, the baryon 
current for the ordinary (Nielsen-Olesen) cosmic string, since the gauge field has 
no &component or + dependence. Therefore the radial kink cannot carry baryon 
number. But, as with the Nielsen-Olesen vortex we will consider an unwinding 
of topological charge where all three pion fields approach the core of the string. 

As before we use the time dependent nucleon ansatz (5.14). The calculation 
of the baryon current proceeds in a similar fashion to the Nielsen-Olesen case. 
Since BP = Bio, we get the same baryon flux as with the ordinary cosmic string, 
hence ANB = -1 as before. Thus superconducting strings catalyse baryon decay. 
But, since we were forced to take a vortex model, i.e. a string with thickness, the 
process proceeds on the scale of the string core. 

To summarise, we have developed the argument of Callan and Witten for 
monopole catalysis of skyrmion decay in such a way that the effects of a topologi- 
tally non-trivial gauge field are highlighted. We then explained the corresponding 
scenario for cosmic strings. We found that a wire model of the string was incom- 
patible with catalysis, but that a vortex model admitted a catalysis scenario. 
This was also shown to be the case for superconducting strings. 

These results support the following heuristic argument (which we will support 
in Section 6) for the enhancement factor in the csse of the monopole cross-section. 
The monopole argument was conducted exclusively within the approximation of 
the Dirac monopole; the only place the concept of a grand unified monopole 
occurred was in invoking baryon number non-conserving boundary conditions. 
By contrast, a thick string or vortex model was required in order to get catalysis 
to occur at all in the string picture. Thus in the monopole picture, the only scale 
we have is the skyrmion scale on the other hand, the inescapability of the vortex 
model in the string case suggests that the reaction is occurring on the scale of 
the string radius, rather than the skyrmion radius, thus giving a grand unified 
cross-section. 

In fact, it is possible to give a better qualitative argument for the order of 
magnitude of the cross-sections. For the monopole we start with the geometrical 
cross-section m-* of the skyrmion. Catalysis then proceeds via the radial kink, 
and since there is no suppression of the neutral pion wave function in the pres- 
ence of the monopole, the effective cross-section has the same order of magnitude 
as the geometrical cross-section. Similarly, for the string we start with the ge- 
ometrical cross-section per unit length m- ‘. However in this case the cataiysis 
cannot proceed via the radial kink, and involves the full skyrmion field configu- 
ration. By examining the Klein-Gordon equation, we see that the wave functions 



of the charged particles involved in the catalysis process are suppressed inside 
the string. For distances between m-r and M-’ 4 cc p. But for p c M-’ the 
relevant wave equation is (5.15) and +4 o( const. as p -+ 0. To match solutions 
at p = M we require that the amplitude of 4 in the core of the string be of 
the order m/M. Hence, the scattering amplitude for catalysis processes will be 
suppressed by m/M, and the cross-sections by (m/M)*, compared to the ge+ 
metrical cross section. The string catalysis cross-sections will therefore be of the 
order (m/M)M-‘. Similar arguments apply in the case of the superconducting 
cosmic string. 

These results support the earlier calculations involving a quark/string scat- 
tering, that is, that there is no enhancement of the baryon decay cross- sections 
for strings. Hence there will be no constraints on the cosmic string scenario from 
catalysis based on later time astrophysical processes. The arguments presented 
here are heuristic, however, the calculation*) (see Section 6) of the cross-sections 
using a non-relativistic spinning particle picture confirms these conclusions. The 
argument provides an elegant pictorial description of the skyrmion decay process. 
It shows clearly the difference between the monopole and string cases, and also 
readily obtains the superconducting string catalysis picture. 

6. THE CALCULATION OF THE CATALYSIS CROSS-SECTION 
We have seen in the previous sections that, in both the free quark and the 
skyrmion pictures, the cross-section for proton decay via cosmic strings is just 
the geometric cross-section, whilst that for monopoles is enhanced via the Callan- 
Rubakov effect. Although the Skyrme model provides additional insight into the 
decay process and gives an order of magnitude for the cross-section, calculation 
of the actual cross-section has not been possible. However, the skyrmion is a 
non-relativistic, spin l/2 particle. Thus the catalysis cross-section for skyrmion 
decay is just the capture cross-section of a spin l/2, non-relativistic particle by 
a monopole or superconducting cosmic string*). 

The classical equations of motion of a non-relativistic spin l/2 particle in the 
presence of a magnetic field are 

m2 = &A B’+ gV(3.Z) 

where, for the Dirac monopole, the magnetic field is B’ = Zg/r3, m is the mass 
of a baryon of charge e and anomalous magnetic moment Q. The motion has 



conserved angular momentum 

.T=mZAZ+Z-eeg2 (6.3) 

which can be used to eliminate the spin S from (6.1). Using spherical polar coor- 
dinates, the 4 and 0 equations CM be readily integrated. All angular dependence 
then cancels from the radial equation to give 

r3i = 21-l - h* - 2eg i (6.4) 

where n is a constant of integration, h = -z(l + Q/2) and i = Qeg/2m*. 
Equation (6.4) is simply the radial equation of a body moving in an inverse cubic 
central force. The separation goes to zero, i.e. the baryon hits the monopole, if 
and only if r3i < 0. 

If the baryon has speed u and impact parameter p then, after rearranging, 
(6.4) becomes 

pi = y*p* - 2ilsI sin v cos p 

where p and Y represent the spin orientation in spherical polar coordinates. Hence 
the hit condition becomes 

m*u*P* < Isleg Q sinYcosp. 

Averaging over the initial orientation of spin and using the Dirac quantisation 
condition we obtain 

u - 2-512 
( > 

& 

For the proton Q - 2.6 and for the neutron Q - -1.9. This change of sign simply 
alters the sector of spin average which contributes, so we need only consider the 
magnitude of Q. Hence we obtain 

~pmton - 0.2(c/~monopd2mb~~ 

In a neutron star the relative velocity of the monopoles is 0.3~ to give u - I.3 
mbams. This cross-section gives a bound on the monopole flux that is more strin- 
gent than that found in3) by a factor of 3. For velocities of 0.3~ the non-relativistic 
approximation is valid since 7 - 1.05 and the Thomas precession term is very 
small. It should be noted that our calculation gives uu* - constant. Previous es- 
timates of the monopole flux have used uv - constant, which comes from a model 
calculation of Rubakov*), where the capture cross-section was neglected*‘). 



Rather than using the magnetic field of a magnetic monopole in (6.1) we can 
use the field of a superconducting cosmic string 0 

B 
Z =- 

2rr ( 1 1 

cl 

(6.5) 

In this case we use cylindrical polar coordinates and take the string to run along 
the .z axis. The axial symmetry of the string yields conservation of the z com- 
ponent of the total angular momentum only, thus it is not possible to eliminate 
the spin from the equations of motion as in the monopole case. The conserved 
quantity, which we denote by .Z,, is 

d/dt (mr*$ + S,) = 0 w 

We also have energy conservation 

E = i&f* - s(3.s) 

Using (6.6) and noting that we can integrate the P component of the equation of 
motion to give an equation for i we obtain 

+ (&)*log2 (;) -s;s# (6.8) 

where ro is the distance at which i = 0. 

The first term will dominate at small enough r, thus the only particles able 
to reach the core are those with .Z. - S, = 0. This requires the initial conditions 
i = 0. However, if we consider a classical distribution of initial spins and orbital 
angular momenta, there are no particles satisfying these stringent conditions. 
Thus the cross-section is zero in the limit of zero string width, as we found 
earlier. 

We can substitute in the various constants into (6.8) and multiply both sides 
by r* so that the right hand side is written in terms of rZ. The resulting equation 
is then displayed graphically in Fig.(l), where a line of constant energy is also 
drawn. 

For the initial conditions r = re,i = i = 0,i = 0 the particle starts at the 
bottom of a sharp dip in the potential, the height of the barrier being approxi- 
mately 4COZ*m. To surmount this barrier the particle requires an initial speed 
io - lOZm/s. Thus the maximum current in the string for which a nonrelativistic 
particle can reach the top of the barrier is Z * 10’ amps. This is several orders 
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FIG. (1): General form of equation (6.8) plotted on a log-bg scale. The curve represents the 

effective potential and the straight line is of constant energy. 

of magnitude less than estimates of the maximal string current25v2’). Further, 
from Fig. (1) we can estimate the maximum current in a string that allows a 
non-relativistic particle to penetrate until it is stopped by the centrifugal barrier. 
This yields the constraint I < lO’(ie/c) amps. Hence, for the maximal string cur- 
rent the non-relativistic approximation breaks down. This suggests that proton 
decay via superconducting cosmic strings only occurs at very high velocities. 

7. SCREENING EFFECTS 
So far, we have seen that cosmic strings can catalyze baryon decay, albeit with 
a grand unified cross section. However, we have not considered any effects which 
may screen the interaction. One origin of screening is the nontrivial spatial 
geometry of a cosmic string. 

It has been shown**) that space around an infinitely long straight string has 
the form of a snub-nosed cone; that is, at the core of the string space is flat while 
asymptotically it is conical. The deficit angle of the cone is %rGp, where p is 
the mass per unit length of the string, and typically GP u 10m6. Scattering of 
bosons and fermions on a cone has been considered in Ref. 29. 

Due to the difficulty in working with the fully coupled matter and gravita- 
tional equations, most analyses of the Callan-Rubakov effect ignore the gravita- 
tional effects of the string. However, Smith91 and Linetso) have shown that a test 
charge in a conical space experiences an electrostatic self-force which is repulsive 
and scales as l/r, where r is the distance from the apex of the cone. In this 
section, we investigate the consequences of this self-force for catalysis. We End a 
potential barrier of height about 10’ GeV. 

To understand the origin of the repulsive self-force, consider as a simple case 
the self-potential of a test charge in a conical space with deficit angle rr. In the 
wedge representation, i.e. flattening out the cone, the potential problem is that 
of a point charge in the upper half plane with Neumann boundary conditions. 
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FIG. (24: The general wedge 

representation. Shading indicates 

wedge not cowered by the core. 

FIG. (Zb): Deficit angle = r. 

Identify the dashed and bold lines. 

To see this, cut the cone opposite to the charge (Figure 2). The apex of the 
cone becomes the origin, the test charge lies on the y axis and the cut edge of 
the cone becomes the positive and negative parts of the z axis. Since the two 
sides of the cut are to be identified, the potential must satisfy 4(z) = +5(-z) 
at y = 0. Furthermore, by rotational symmetry it follows that 6J~/CJyl,=o = 0. 
Thus we have Neumann boundary conditions. The potential is now easily found 
by introducing an image charge of the same magnitude and sign at the site of 
the test charge reflected about the 2 axis. Hence, there is a repulsive potential 
proportional to l/r. 

For the singular cone, Smith’) calculated the self energy of a particle of charge 
c. The resulting self force is (with p = 1 + 4Gb) 

(7.1) 

The space-time of a caxnic string does not have a singularity at the origin. 
A more realistic space-time structure is that of a snub-nosed cone’s) which is a 
consequence of the vortex model*O). Using the symmetries of the problem, we 
can write the metric in the form 

ds* = e’(dt’ - dr’ - dz*) - a*c-‘dR* (7.2) 

with induced Laplacian 

V3 = e-1 (&+($;).g+g+.g), 



(7.3) 

where ’ denotes differentiation with respect to r. Inserting the above ansatz into 
the Einstein equations leads to the following diffential equations for the functions 
a(r,t) and $r,t): 

2 = -&‘(E - Pp) 

(7.4) 

It is convenient to write these equations in terms of dimensionless variables & = 
o/rd, p = r/r, (where rb is the radius of the string) and c = 8aCp. E, Pp and Pe 
are also dimensionless and can be obtained from the corresponding components 
of T’, by dividing by X$. 

In order to determine E,P,, and & it is sufficient to consider the flat space 
matter field equations. The fully coupled system (i.e. matter equations coupled 
to the snub-nosed cone dynamical background) has been considered3’l and it 
was shown that the flat space solutions of the matter field equations are a good 
approximation to those obtained from the fully coupled system. 

Proceeding along the lines of Ref. 9, we can expand the self potential into 
eigenfunctions of L,. The m’th harmonic satisfies the following radial differential 
equation 

,,+(!&$&,-($mf+k2)&,=0 (7.5) 

In the case of the singular cone, o = r/p and (7.5) is a modified Bessel equation. 
For the snub-nosed cone, u/r and 7 are no longer constant. There exists no exact 
analytical solution for Q and 7. However, for small r we have28l 

(2-r and $0) = r’(0) = 0 (7.6) 

whereas for large r (r 2 (2 - 3)r,) 

a=ar+b and 7= const (7.7) 

To first order in c,e = 1 - O(c), b = O(c) and q = O(c). Inserting (7.6) and (7.7) 
into (7.5) we find that the right hand side becomes O(d), where v = mc’lr/o. 
For slowly evolving deficit angles v’ - 0. Thus, in this approximation (7.5) is 
essentially a modified Bessel equation with r dependent constants. In this caSe 
the method of Smith’) can be used, and leads to a similar result, but with an 
evolving value of p. At r = 0,p = 1 and there is no self-force. This is expected 
since the space-time is flat at the centre of the string. For r > 2r,, p is fixed at its 



large r value of 1 + 4?rG/.~, and we obtain the l/r potential of Smith for distances 
2-3 times rl. Closer than this the deficit angle diminishes and the p,otential drops 
to zero. The height of the screening potential can be estimated from the value of 
the singular string potential at r = 2r,. For Gp = IO-’ the height is about 10’ 
GeV. 

To conclude, we have found that taking into account the structure of space- 
time around a cosmic string leads to a potential barrier of height about 10’ 
GeV. Classically, this would restrict catalysis to a high energy process. Quantum 
mechanically, there is tunnelling through this barrier, as discussed in Ref. 32. 

8. CONCLUSIONS 
In this review we have seen that, in both the free quark and skyrmion pictures, 
cosmic strings and superconducting strings catalyse baryon decay with a grand 
unified cross-section. This is in contrast to the monopoie case where the cross- 
section is enhanced via the Callan-Rubakov effect. We have seen that this differ- 
ence can be traced to the presence of long-range, attractive forces in the monopole 
caSe which cause the wavefunction to be enhanced in the monopole core. In 
contrast, there are no attractive forces in the cosmic string case, and thus no 
enhancement of the wavefunction in the string core. Thus the cross-section is 
just the geometric cross-section. This is the case for integer flux. For fractional 
flux there is an enhancement of the wavefunction in the string core due to the 
Aharanov-Bohm effect. 

Despite the small cross-section, cosmic string catalysis can have physical con- 
sequences in the early Universe. Near the phase transition the number density of 
strings is very large and can ersse a substantial fraction of a pm-existing baryon 
asymmetry. Whilst the cross-section is enhanced for non-integer flux we have 
briefly discussed how the amplification factor is damped at finite temperature, 
in a similar manner to that of the monopole case. Hence, it is unlikely to have 
implications for baryogenesis over and above that already discusred for integer 
flux. 

In the Skyrme model we have actually been able to estimate the cross-section 
for monopole catalysis. Since the skyrmion is a non-relativistic, spin l/2 particle 
the cross-section is just the capture cross-section, found by solving the classical 
equations of motion. For the superconducting cosmic string we found a potential 
barrier that seems to indicate that catalysis is a high velocity process. 

Finally we have considered effects that might screen the cosmic string catal- 
ysis cross-section. By taking into account the non-trivial space-time structure 
around a cosmic string we have shown that charged particles encounter a poten- 
tial barrier of height lo7 GeV. Classically this limits string catalysis to a high 
energy process near the phase-transition, though quantum mechanically there is 



the pcesibility of tunnelling. 
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